Source code for flood_forecast.trainer

# flake8: noqa
import argparse
from typing import Dict
import json
import plotly.graph_objects as go
import wandb
import pandas as pd
from flood_forecast.pytorch_training import train_transformer_style
from flood_forecast.time_model import PyTorchForecast
from flood_forecast.evaluator import evaluate_model
from flood_forecast.time_model import scaling_function
from flood_forecast.plot_functions import (
    plot_df_test_with_confidence_interval,
    plot_df_test_with_probabilistic_confidence_interval)


[docs]def train_function(model_type: str, params: Dict): """Function to train a Model(TimeSeriesModel) or da_rnn. Will return the trained model :param model_type: Type of the model. In almost all cases this will be 'PyTorch' :type model_type: str :param params: Dictionary containing all the parameters needed to run the model :type Dict: """ dataset_params = params["dataset_params"] if model_type == "da_rnn": from flood_forecast.da_rnn.train_da import da_rnn, train from flood_forecast.preprocessing.preprocess_da_rnn import make_data preprocessed_data = make_data( params["dataset_params"]["training_path"], params["dataset_params"]["target_col"], params["dataset_params"]["forecast_length"]) config, model = da_rnn(preprocessed_data, len(dataset_params["target_col"])) # All train functions return trained_model trained_model = train(model, preprocessed_data, config) elif model_type == "PyTorch": dataset_params["batch_size"] = params["training_params"]["batch_size"] trained_model = PyTorchForecast( params["model_name"], dataset_params["training_path"], dataset_params["validation_path"], dataset_params["test_path"], params) takes_target = False if "takes_target" in trained_model.params: takes_target = trained_model.params["takes_target"] if "dataset_params" not in trained_model.params["inference_params"]: print("Using generic dataset params") trained_model.params["inference_params"]["dataset_params"] = trained_model.params["dataset_params"].copy() del trained_model.params["inference_params"]["dataset_params"]["class"] # noqa: F501 trained_model.params["inference_params"]["dataset_params"]["interpolate_param"] = trained_model.params["inference_params"]["dataset_params"].pop("interpolate") trained_model.params["inference_params"]["dataset_params"]["scaling"] = trained_model.params["inference_params"]["dataset_params"].pop("scaler") trained_model.params["inference_params"]["dataset_params"]["feature_params"] = trained_model.params["inference_params"]["dataset_params"].pop("feature_param") delete_params = ["num_workers", "pin_memory", "train_start", "train_end", "valid_start", "valid_end", "test_start", "test_end", "training_path", "validation_path", "test_path", "batch_size"] for param in delete_params: if param in trained_model.params["inference_params"]["dataset_params"]: del trained_model.params["inference_params"]["dataset_params"][param] train_transformer_style(model=trained_model, training_params=params["training_params"], takes_target=takes_target, forward_params={}) # To do delete if "scaler" in dataset_params: if "scaler_params" in dataset_params: params["inference_params"]["dataset_params"]["scaling"] = scaling_function({}, dataset_params)["scaling"] else: params["inference_params"]["dataset_params"]["scaling"] = scaling_function({}, dataset_params)["scaling"] params["inference_params"]["dataset_params"].pop('scaler_params', None) test_acc = evaluate_model( trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {}) wandb.run.summary["test_accuracy"] = test_acc[0] df_train_and_test = test_acc[1] forecast_start_idx = test_acc[2] df_prediction_samples = test_acc[3] mae = (df_train_and_test.loc[forecast_start_idx:, "preds"] - df_train_and_test.loc[forecast_start_idx:, params["dataset_params"]["target_col"][0]]).abs() inverse_mae = 1 / mae i = 0 for df in df_prediction_samples: pred_std = df.std(axis=1) average_prediction_sharpe = (inverse_mae / pred_std).mean() wandb.log({'average_prediction_sharpe' + str(i): average_prediction_sharpe}) i += 1 df_train_and_test.to_csv("temp_preds.csv") # Log plots now if "probabilistic" in params["inference_params"]: test_plot = plot_df_test_with_probabilistic_confidence_interval( df_train_and_test, forecast_start_idx, params,) elif len(df_prediction_samples) > 0: for thing in zip(df_prediction_samples, params["dataset_params"]["target_col"]): thing[0].to_csv(thing[1] + ".csv") test_plot = plot_df_test_with_confidence_interval( df_train_and_test, thing[0], forecast_start_idx, params, targ_col=thing[1], ci=95, alpha=0.25) wandb.log({"test_plot_" + thing[1]: test_plot}) else: pd.options.plotting.backend = "plotly" t = params["dataset_params"]["target_col"][0] test_plot = df_train_and_test[[t, "preds"]].plot() wandb.log({"test_plot_" + t: test_plot}) print("Now plotting final plots") test_plot_all = go.Figure() for relevant_col in params["dataset_params"]["relevant_cols"]: test_plot_all.add_trace( go.Scatter( x=df_train_and_test.index, y=df_train_and_test[relevant_col], name=relevant_col)) wandb.log({"test_plot_all": test_plot_all}) else: raise Exception("Please supply valid model type for forecasting") return trained_model
[docs]def main(): """ Main function which is called from the command line. Entrypoint for training all ML models. """ parser = argparse.ArgumentParser(description="Argument parsing for training and eval") parser.add_argument("-p", "--params", help="Path to model config file") args = parser.parse_args() with open(args.params) as f: training_config = json.load(f) train_function(training_config["model_type"], training_config) # evaluate_model(trained_model) print("Process is now complete.")
if __name__ == "__main__": main()