Source code for flood_forecast.preprocessing.pytorch_loaders

from torch.utils.data import Dataset
import numpy as np
import pandas as pd
import torch
from typing import List, Union, Optional
from flood_forecast.pre_dict import interpolate_dict
from flood_forecast.preprocessing.buil_dataset import get_data
from datetime import datetime
from flood_forecast.preprocessing.temporal_feats import feature_fix


[docs]class CSVDataLoader(Dataset):
[docs] def __init__( self, file_path: str, forecast_history: int, forecast_length: int, target_col: List, relevant_cols: List, scaling=None, start_stamp: int = 0, end_stamp: int = None, gcp_service_key: Optional[str] = None, interpolate_param: bool = False, sort_column=None, scaled_cols=None, feature_params=None, id_series_col=None, no_scale=False ): """ A data loader that takes a CSV file and properly batches for use in training/eval a PyTorch model :param file_path: The path to the CSV file you wish to use. :param forecast_history: This is the length of the historical time series data you wish to utilize for forecasting :param forecast_length: The number of time steps to forecast ahead (for transformer this must equal history_length) :param relevant_cols: Supply column names you wish to predict in the forecast (others will not be used) :param target_col: The target column or columns you to predict. If you only have one still use a list ['cfs'] :param scaling: (highly reccomended) If provided should be a subclass of sklearn.base.BaseEstimator and sklearn.base.TransformerMixin) i.e StandardScaler, MaxAbsScaler, MinMaxScaler, etc) Note without a scaler the loss is likely to explode and cause infinite loss which will corrupt weights :param start_stamp int: Optional if you want to only use part of a CSV for training, validation or testing supply these :param end_stamp int: Optional if you want to only use part of a CSV for training, validation, or testing supply these :param sort_column str: The column to sort the time series on prior to forecast. :param scaled_cols: The columns you want scaling applied to (if left blank will default to all columns) :param feature_params: These are the datetime features you want to create. :param no_scale: This means that the end labels will not be scaled when running """ super().__init__() interpolate = interpolate_param self.forecast_history = forecast_history self.forecast_length = forecast_length self.series_col = id_series_col print("interpolate should be below") self.local_file_path = get_data(file_path, gcp_service_key) df = pd.read_csv(self.local_file_path) relevant_cols3 = [] if sort_column: df[sort_column] = pd.to_datetime(df[sort_column]) df = df.sort_values(by=sort_column) if feature_params: df, relevant_cols3 = feature_fix(feature_params, sort_column, df) print("Created datetime feature columns are: ") print(relevant_cols3) self.relevant_cols3 = relevant_cols3 if interpolate: df = interpolate_dict[interpolate["method"]](df, **interpolate["params"]) self.df = df[relevant_cols + relevant_cols3].copy() print("Now loading " + file_path) self.original_df = df self.scale = None if scaled_cols is None: scaled_cols = relevant_cols if start_stamp != 0 and end_stamp is not None: self.df = self.df[start_stamp:end_stamp] elif start_stamp != 0: self.df = self.df[start_stamp:] elif end_stamp is not None: self.df = self.df[:end_stamp] self.unscaled_df = self.df if scaling is not None: print("scaling now") self.scale = scaling.fit(self.df[scaled_cols]) temp_df = self.scale.transform(self.df[scaled_cols]) # We define a second scaler to scale the end output # back to normal as models might not necessarily predict # other present time series values. targ_scale_class = self.scale.__class__ self.targ_scaler = targ_scale_class() self.df[target_col] = self.targ_scaler.fit_transform(self.df[target_col]) self.df[scaled_cols] = temp_df if (len(self.df) - self.df.count()).max() != 0: print("Error nan values detected in data. Please run interpolate ffill or bfill on data") self.targ_col = target_col self.df.to_csv("temp_df.csv") self.no_scale = no_scale
def __getitem__(self, idx): rows = self.df.iloc[idx: self.forecast_history + idx] targs_idx_start = self.forecast_history + idx if self.no_scale: targ_rows = self.unscaled_df.iloc[targs_idx_start: self.forecast_length + targs_idx_start] else: targ_rows = self.df.iloc[ targs_idx_start: self.forecast_length + targs_idx_start ] src_data = rows.to_numpy() src_data = torch.from_numpy(src_data).float() trg_dat = targ_rows.to_numpy() trg_dat = torch.from_numpy(trg_dat).float() return src_data, trg_dat def __len__(self) -> int: return ( len(self.df.index) - self.forecast_history - self.forecast_length - 1 )
[docs] def inverse_scale( self, result_data: Union[torch.Tensor, pd.Series, np.ndarray] ) -> torch.Tensor: """Un-does the scaling of the data :param result_data: The data you want to unscale can handle multiple data types. :type result_data: Union[torch.Tensor, pd.Series, np.ndarray] :return: Returns the unscaled data as PyTorch tensor. :rtype: torch.Tensor """ if isinstance(result_data, pd.Series) or isinstance( result_data, pd.DataFrame ): result_data_np = result_data.values if isinstance(result_data, torch.Tensor): if len(result_data.shape) > 2: result_data = result_data.permute(2, 0, 1).reshape(result_data.shape[2], -1) result_data = result_data.permute(1, 0) result_data_np = result_data.numpy() if isinstance(result_data, np.ndarray): result_data_np = result_data # print(type(result_data)) if self.no_scale: return torch.from_numpy(result_data_np) return torch.from_numpy( self.targ_scaler.inverse_transform(result_data_np) )
[docs]class CSVTestLoader(CSVDataLoader):
[docs] def __init__( self, df_path: str, forecast_total: int, use_real_precip=True, use_real_temp=True, target_supplied=True, interpolate=False, sort_column_clone=None, **kwargs ): """ :param str df_path: A data loader for the test data. """ if "file_path" not in kwargs: kwargs["file_path"] = df_path super().__init__(**kwargs) df_path = get_data(df_path) self.original_df = pd.read_csv(df_path) if interpolate: self.original_df = interpolate_dict[interpolate["method"]](self.original_df, **interpolate["params"]) if sort_column_clone: self.original_df = self.original_df.sort_values(by=sort_column_clone) print("CSV Path below") print(df_path) self.forecast_total = forecast_total self.use_real_temp = use_real_temp self.use_real_precip = use_real_precip self.target_supplied = target_supplied # Convert back to datetime and save index sort_col1 = sort_column_clone if sort_column_clone else "datetime" self.original_df[sort_col1] = self.original_df["datetime"].astype( "datetime64[ns]" ) self.original_df["original_index"] = self.original_df.index if len(self.relevant_cols3) > 0: self.original_df[self.relevant_cols3] = self.df[self.relevant_cols3]
[docs] def get_from_start_date(self, forecast_start: datetime): dt_row = self.original_df[ self.original_df["datetime"] == forecast_start ] revised_index = dt_row.index[0] return self.__getitem__(revised_index - self.forecast_history)
def __getitem__(self, idx): if self.target_supplied: historical_rows = self.df.iloc[idx: self.forecast_history + idx] target_idx_start = self.forecast_history + idx # Why aren't we using these # targ_rows = self.df.iloc[ # target_idx_start : self.forecast_total + target_idx_start # ] all_rows_orig = self.original_df.iloc[ idx: self.forecast_total + target_idx_start ].copy() historical_rows = torch.from_numpy(historical_rows.to_numpy()) return historical_rows.float(), all_rows_orig, target_idx_start
[docs] def convert_real_batches(self, the_col: str, rows_to_convert): """ A helper function to return properly divided precip and temp values to be stacked with forecasted cfs. """ the_column = torch.from_numpy(rows_to_convert[the_col].to_numpy()) chunks = [ the_column[ self.forecast_length * i: self.forecast_length * (i + 1) ] for i in range(len(the_column) // self.forecast_length + 1) ] return chunks
[docs] def convert_history_batches( self, the_col: Union[str, List[str]], rows_to_convert: pd.DataFrame ): """A helper function to return dataframe in batches of size (history_len, num_features) Args: the_col (str): column names rows_to_convert (pd.Dataframe): rows in a dataframe to be converted into batches """ the_column = torch.from_numpy(rows_to_convert[the_col].to_numpy()) chunks = [ the_column[ self.forecast_history * i: self.forecast_history * (i + 1) ] for i in range(len(the_column) // self.forecast_history + 1) ] return chunks
def __len__(self) -> int: return ( len(self.df.index) - self.forecast_history - self.forecast_total - 1 )
[docs]class AEDataloader(CSVDataLoader):
[docs] def __init__( self, file_path: str, relevant_cols: List, scaling=None, start_stamp: int = 0, target_col: List = None, end_stamp: int = None, unsqueeze_dim: int = 1, interpolate_param=False, forecast_history=1, no_scale=True, sort_column=None): """ A data loader class for autoencoders. Overrides __len__ and __getitem__ from generic dataloader. Also defaults forecast_history and forecast_length to 1. Since AE will likely only use one row. Same parameters as before. """ super().__init__(file_path=file_path, forecast_history=forecast_history, forecast_length=1, target_col=target_col, relevant_cols=relevant_cols, start_stamp=start_stamp, end_stamp=end_stamp, sort_column=sort_column, interpolate_param=False, no_scale=no_scale, scaling=scaling) self.unsqueeze_dim = unsqueeze_dim
def __handle_params__(): pass def __len__(self): return len(self.df.index) - 1 - self.forecast_history def __getitem__(self, idx: int, uuid: int = None, column_relevant: str = None): # Warning this assumes that data is if uuid: idx = self.original_df[self.original_df[column_relevant] == uuid].index.values.astype(int)[0] target = torch.from_numpy(self.df.iloc[idx: idx + self.forecast_history].to_numpy()).float() if target.shape[0] == 0: raise ValueError("The item was not found in the index please try again") return torch.from_numpy(self.df.iloc[idx: idx + self.forecast_history].to_numpy()).float(), target
[docs]class TemporalLoader(CSVDataLoader):
[docs] def __init__( self, time_feats: List[str], kwargs): """[summary] :param time_feats: [description] :type time_feats: List[str] :param kwargs: [description] :type kwargs: [type] """ super().__init__(**kwargs) self.time_feats = time_feats self.temporal_df = self.df[time_feats] self.other_feats = self.df.drop(columns=time_feats)
[docs] @staticmethod def df_to_numpy(pandas_stuff: pd.DataFrame): return torch.from_numpy(pandas_stuff.to_numpy()).float()
def __getitem__(self, idx: int): rows = self.other_feats.iloc[idx: self.forecast_history + idx] temporal_feats = self.temporal_df.iloc[idx: self.forecast_history + idx] targs_idx_start = self.forecast_history + idx targ_rows = self.other_feats.iloc[ targs_idx_start: self.forecast_length + targs_idx_start ] tar_temporal_feats = self.temporal_df.iloc[targs_idx_start: self.forecast_length + targs_idx_start] src_data = self.df_to_numpy(rows) trg_data = self.df_to_numpy(targ_rows) temporal_feats = self.df_to_numpy(temporal_feats) tar_temp = self.df_to_numpy(tar_temporal_feats) return (src_data, temporal_feats), (tar_temp, trg_data) def __len__(self): return ( len(self.df.index) - self.forecast_history - self.forecast_length - 1 )
[docs]class TemporalTestLoader(CSVTestLoader):
[docs] def __init__(self, time_feats, kwargs={}, decoder_step_len=None): """[summary] :param time_feats: [description] :type time_feats: [type] :param kwargs: [description], defaults to {} :type kwargs: dict, optional :param decoder_step_len: [description], defaults to None :type decoder_step_len: [type], optional """ super().__init__(kwargs["df_path"], kwargs["forecast_total"], **kwargs["kwargs"]) self.time_feats = time_feats self.temporal_df = self.df[time_feats] self.other_feats = self.df.drop(columns=time_feats) self.decoder_step_len = decoder_step_len
[docs] @staticmethod def df_to_numpy(pandas_stuff: pd.DataFrame): return torch.from_numpy(pandas_stuff.to_numpy()).float()
def __getitem__(self, idx): if self.target_supplied: historical_rows = self.df.iloc[idx: self.forecast_history + idx] target_idx_start = self.forecast_history + idx # Why aren't we using these # targ_rows = self.df.iloc[ # target_idx_start : self.forecast_total + target_idx_start historical_rows = self.other_feats.iloc[idx: self.forecast_history + idx] targs_idx_start = self.forecast_history + idx temporal_feat = self.temporal_df.iloc[idx: self.forecast_history + idx] end_idx = self.forecast_total + target_idx_start if self.decoder_step_len: end_idx = self.forecast_total + target_idx_start + self.decoder_step_len tar_temporal_feats = self.temporal_df.iloc[targs_idx_start: end_idx] targ_rows = self.other_feats.iloc[targs_idx_start: end_idx] else: tar_temporal_feats = self.temporal_df.iloc[targs_idx_start: end_idx] targ_rows = self.other_feats.iloc[targs_idx_start: end_idx] src_data = self.df_to_numpy(historical_rows) trg_data = self.df_to_numpy(targ_rows) temporal_feat = self.df_to_numpy(temporal_feat) tar_temp = self.df_to_numpy(tar_temporal_feats) all_rows_orig = self.original_df.iloc[ idx: self.forecast_total + target_idx_start ].copy() historical_rows = torch.from_numpy(historical_rows.to_numpy()) return (src_data, temporal_feat), (tar_temp, trg_data), all_rows_orig, target_idx_start