Source code for flood_forecast.trainer

import argparse
from typing import Dict
import json
import plotly.graph_objects as go
import wandb
from flood_forecast.pytorch_training import train_transformer_style
from flood_forecast.time_model import PyTorchForecast
from flood_forecast.evaluator import evaluate_model
from flood_forecast.pre_dict import scaler_dict
from flood_forecast.plot_functions import plot_df_test_with_confidence_interval


[docs]def train_function(model_type: str, params: Dict): """ Function to train a Model(TimeSeriesModel) or da_rnn. Will return the trained model model_type str: Type of the model (for now) must be da_rnn or :params dict: Dictionary containing all the parameters needed to run the model """ dataset_params = params["dataset_params"] if model_type == "da_rnn": from flood_forecast.da_rnn.train_da import da_rnn, train from flood_forecast.preprocessing.preprocess_da_rnn import make_data preprocessed_data = make_data( params["dataset_params"]["training_path"], params["dataset_params"]["target_col"], params["dataset_params"]["forecast_length"]) config, model = da_rnn(preprocessed_data, len(dataset_params["target_col"])) # All train functions return trained_model trained_model = train(model, preprocessed_data, config) elif model_type == "PyTorch": trained_model = PyTorchForecast( params["model_name"], dataset_params["training_path"], dataset_params["validation_path"], dataset_params["test_path"], params) train_transformer_style(trained_model, params["training_params"], params["forward_params"]) params["inference_params"]["dataset_params"]["scaling"] = scaler_dict[dataset_params["scaler"]] test_acc = evaluate_model( trained_model, model_type, params["dataset_params"]["target_col"], params["metrics"], params["inference_params"], {}) wandb.run.summary["test_accuracy"] = test_acc[0] df_train_and_test = test_acc[1] forecast_start_idx = test_acc[2] df_prediction_samples = test_acc[3] mae = (df_train_and_test.loc[forecast_start_idx:, "preds"] - df_train_and_test.loc[forecast_start_idx:, params["dataset_params"]["target_col"][0]]).abs() inverse_mae = 1 / mae pred_std = df_prediction_samples.std(axis=1) average_prediction_sharpe = (inverse_mae / pred_std).mean() wandb.log({'average_prediction_sharpe': average_prediction_sharpe}) # Log plots test_plot = plot_df_test_with_confidence_interval( df_train_and_test, df_prediction_samples, forecast_start_idx, params, ci=95, alpha=0.25) wandb.log({"test_plot": test_plot}) test_plot_all = go.Figure() for relevant_col in params["dataset_params"]["relevant_cols"]: test_plot_all.add_trace( go.Scatter( x=df_train_and_test.index, y=df_train_and_test[relevant_col], name=relevant_col)) wandb.log({"test_plot_all": test_plot_all}) else: raise Exception("Please supply valid model type for forecasting") return trained_model
[docs]def main(): """ Main function which is called from the command line. Entrypoint for all ML models. """ parser = argparse.ArgumentParser(description="Argument parsing for training and eval") parser.add_argument("-p", "--params", help="Path to model config file") args = parser.parse_args() with open(args.params) as f: training_config = json.load(f) train_function(training_config["model_type"], training_config) # evaluate_model(trained_model) print("Process is now complete.")
if __name__ == "__main__": main()